1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
| data['DateTime'] = pd.to_datetime(data['DateTime'])
filtered_data = data[data['DateTime'] > '2020-12-31'].copy() filtered_data = data[data['DateTime'] > '2020-12-31'].copy(deep=True)
filtered_data.head()
filtered_data.loc[:, 'Raw Close (PRCCD)'] = pd.to_numeric(filtered_data['Raw Close (PRCCD)'], errors='coerce') filtered_data = filtered_data.dropna(subset=['Raw Close (PRCCD)'])
filtered_data.loc[:, 'Daily Return'] = filtered_data['Raw Close (PRCCD)'].pct_change()
avg_daily_return = filtered_data['Daily Return'].mean()
annualized_return = avg_daily_return * 251 print(f"Average Annualized Return: {annualized_return:.4f}")
|